The

Complete
Reference

C++: The Complete Reference

hierarchical classifications. Using inheritance, you can create a general class that

defines traits common to a set of related items. This class may then be inherited
by other, more specific clasces, each adding only those things that are unique to the
inheriting class.

In keeping with standard C++ terminology, a class that is inherited is referred to
as a base class. The class that does the inheriting is called the derived class. Further, a
derived class can be used as a base class for another derived class. In this way, multiple
inheritance is achieved.

C++'s support of inheritance is both rich and flexible. Inheritance was introduced in
Chapter 11. It is examined in detail here.

I nheritance is one of the cornerstones of OOP because it allows the creation of

Base-Class Access Control

When a class inherits another, the members of the base class become members of the
derived class. Class inheritance uses this general form:

class derived-class-name : access base-class-name {
// body of class
L

The access status of the base-class members inside the derived class is determined by
access. The base-class access specifier must be either public, private, or protected. If no
access specifier is present, the access specifier is private by default if the derived class
is a class. If the derived class is a struct, then public is the default in the absence of an
explicit access specifier. Let's examine the ramifications of using public or private
access. (The protected specifier is examined in the next section.)

When the access specifier for a base class is public, all public members of the base
become public members of the derived class, and all protected members of the base
become protected members of the derived class. In all cases, the base's private elements
remain private to the base and are not accessible by members of the derived class. For
example, as illustrated in this program, objects of type derived can directly access the
public members of base:

L. #include <iostream>
using namespace std;

class base {
int i, j;
public:
void set(int a, int b) { i=a; j=b; }

Chapter 16: Inheritance 419

void show() { cout << i << " " << j << "\n"; }
i

class derived : public base {

int k;
public:

derived(int x) { k=x; }

void showk() { cout << k << "\n"; }
}i

int main{()
{
derived ob(3);

ob.set(l, 2); // access member of base
ob.show(); // access member of base
ob.showk(); // uses member of derived class
return 0O;

When the base class is inherited by using the private access specifier, all public and
protected members of the base class become private members of the derived class. For
example, the following program will not even compile because both set() and show()
are now private elements of derived:

// This program won't compile.
#include <iostream>
using namespace std;

class base ({
int i, j;

public:
void set(int a, int b) { i=a; j=b; }
void show() { cout << i << " " << j << "\n";}

T

// Public elements of base are private in derived.
class derived : private base ({
int k;

420 C++: The Complete Reference

public:

derived(int x) { k=x; }

void showk() { cout << k << "\n"; }
Y

int main()

{
derived ob(3);

ob.set (1, 2); // error, can't access set()
ob.show(); // error, can't access show()
return 0;

I When a base class” access specifier is private, public and protected members of the base
become private members of the derived class. This means that they are still accessible by
members of the derived class but cannot be accessed by parts of your program that are
not members of either the base or derived class.

___ | Inheritance and protected Members

The protected keyword is included in C++ to provide greater flexibility in the
inheritance mechanism. When a member of a class is declared as protected, that
member is not accessible by other, nonmember elements of the program. With one
important exception, access to a protected member is the same as access to a private
member—it can be accessed only by other members of its class. The sole exception to
this is when a protected member is inherited. In this case, a protected member differs
substantially from a private one.

As explained in the preceding section, a private member of a base class is not
accessible by other parts of your program, including any derived class. However,
protected members behave differently. If the base class is inherited as public, then
the base class' protected members become protected members of the derived class and
are, therefore, accessible by the derived class. By using protected, you can create class
members that are private to their class but that can still be inherited and accessed by a
derived class. Here is an example:

#include <iostream>
using namespace std;

class base {

Chapter 16: Inheritance 421

protected:

int i, J; // private to base, but accessible by derived
public:

void set(int a, int b) { i=a; J=b; }

void show() { cout << i << " " << j << "\n"; }

I

class derived : public base ({
int k;

public:
// derived may access base's 1 and j
void setk{) { k=1*7j; }

void showk () { cout << k << "\n"; }
Y

int main()

{

derived cb;

ob.set (2, 3); // OK, known to derived
ob.show(); // OK, known to derived

ob.setk();
ob.showk () ;

return 0;

In this example, because base is inherited by derived as public and because i and
j are declared as protected, derived's function setk() may access them. If i and j had
been declared as private by base, then derived would not have access to them, and the
program would not compile.

When a derived class is used as a base class for another derived class, any protected
member of the initial base class that is inherited (as public) by the first derived class
may also be inherited as protected again by a second derived class. For example, this
program is correct, and derived2 does indeed have access to i and j.

#include <iostream>
using namespace std;

class base {

422 C++: The Complete Reference

protected:
int i, 7J;
public:
void set(int a, int b) { i=a; j=b; }
void show() { cout << i << " " << § << "\n"; }

Y

// i and j inherited as protected.
class derivedl : public base ({

int k;

public:
void setk() { k = i*j; } // legal
void showk() { cout << k << "\n"; }

Y

// i and j inherited indirectly through derivedl.
class derived2 : public derivedl {

int m;
public:
void setm() { m = i-j; } // legal
void showm() { cout << m << "\n"; }
}i
int main ()

{
derivedl obl;
derived2 ob2;

obl.set (2,
obl.show ()
obl.setk()
obl.showk (

3);

;
;
)i

ob2.set (3,
ob2.show() ;
ob2.setk()

ob2.setm()
ob2 . showk (
ob2 . showm (

4);

’

7

)
)

return 0;

Chapter 16: Inheritance 423

If, however, base were inherited as private, then all members of base would
become private members of derived1, which means that they would not be accessible
by derived2. (However, i and j would still be accessible by derivedl.) This situation
is illustrated by the following program, which is in error (and won't compile). The
comments describe each error:

// This program won't compile.
#include <iostream>

using namespace std;

class base {

protected:

int 1, 3;

public:

void set(int a, int b) { i=a; Z=b: }

I

void show() { cout << i << " " << J << "\n"; }

// Now, all elements of base are private in derivedl.
class derivedl : private base {

int k;
public:
R al because i and j are private to derivedl
void setk() { k = i*j; } // OK
void showk() { cout << k << "\n"; }

this 1s leg

Ji

// Access to i, j, set(), and show() not inherited.
class derived2 : public derivedl {
int m;
pubiic:
// illegel because i and j are private to derivedl
void setm() { m = i-3; } // Error

void showm() { cout << m << "\n"; }

Y

int main{)

{
derivedl obl;
derived2 obZ2;

obl.set (., 2); // error, can't use set()

424 C++: The Complete Reference

obl.show(); // error, can't use show()
ob2.set (3, 4); // error, can't use set ()
ob2.show(); // error, can't use show()
return 0;

~ NOte I Even though base is inherited as private by derived1, derived1 still has access to
base's public and protected clements. However, it cannot pass along this privilege.

Protected Base-Class Inheritance

It is possible to inherit a base class as protected. When this is done, all public and
protected members of the base class become protected members of the derived class.
For example,

#include <iostream>
using namespace std;

class base {
protected:
int i, j; // private to base, but accessible by derived

public:
void setij(int a, int b) { i=a; j=b;)
void showij() { cout << i << " " << § << "\n"; }

}i

// Inherit base as protected.

class derived : protected base(
int k;

public:
// derived may access base's i and j and setij ().
void setk() { setij (10, 12); k = i*j;)

// may access showij() here
void showall() { cout << k << " ", showij(); }
}i

int main()

Chapter 16: Inheritance 425

derived ob;

// ob.setij(2, 3); // illegal, setij() is

// protected member of derived
ob.setk(); // OK, public member of derived
ob.showall(); // OK, public member of derived

// ob.showij(); // illegal, showij() is protected

!/ member of derived
return 0;

As you can see by reading the comments, even though setij() and showij() are
public members of base, they become protected members of derived when it is
inherited using the protected access specifier. This means that they will not be
accessible inside main().

___] Inheri‘tiﬁg‘"MUItiplé Base Classes

It is possible for a derived class to inherit two or more base classes. For example, in this
short example, derived inherits both basel and base2.

// An example of multiple base classes.

#include <iostream>
using namespace std;

class basel {
protected:
int x;
public:
void showx () { cout << x << "\n"; 1}
}i

class base2 {

protected:
int vy;

public:

; ‘ ‘? Cts: The Complete Reference

void showy () {cout << y << "\n";}
I

// Inherit multiple base classes.
class derived: public basel, public base2 {
public:
void set(int i, int j)} { x=1i; y=3; }
Y
int main()
{

derived ob;

ob.set (10, 20); // provided by derived

ob.showx(); // from basel
ob.showy(); // from base2
return 0;

As the example illustrates, to inherit more than one base class, use a comma-
separated list. Further, be sure to use an access-specifier for each base inherited.

__| Constructors, Destructors, and Inheritance

There are two major questions that arise relative to constructors and destructors when
inheritance is involved. First, when are base-class and derived-class constructors and
destructors called? Second, how can parameters be passed to base-class constructors?
This section examines these two important topics.

When Constructors and Destructors
Are Executed

It is possible for a base class, a derived class, or both to contain constructors and/or
destructors. It is important to understand the order in which these functions are
executed when an object of a derived class comes into existence and when it goes out
of existence. To begin, examine this short program:

#include <iostream>
using namespace std;

Chapter 16: Inheritance 427

class base {

public:
base() { cout << "Constructing base\n"; }
~base() { cout << "Destructing base\n"; }

Y

class derived: public base {

public:
derived() { cout << "Constructing derived\n"; }
~derived() { cout << "Destructing derived\n"; }

i

int main()
{
derived ob;

// do nothing but construct and destruct ob

return 0;

As the comment in main() indicates, this program simply constructs and then
destroys an object called ob that is of class derived. When executed, this program
displays

Constructing base
Constructing derived
Destructing derived
Destructing base

As you can see, first base's constructor is executed followed by derived's. Next (because
ob is immediately destroyed in this program), derived's destructor is called, followed
by base's.

The results of the foregoing experiment can be generalized. When an object of a
derived class is created, the base class’ constructor will be called first, followed by the
derived class’ constructor. When a derived object is destroyed, its destructor is called
first, followed by the base class' destructor. Put differently, constructors are executed in
their order of derivation. Destructors are executed in reverse order of derivation.

If you think about it, it makes sense that constructors are executed in order of
derivation. Because a base class has no knowledge of any derived class, any

428

C++: The Complete Reference

initialization it needs to perform is separate from and possibly prerequisite to any
initialization performed by the derived class. Therefore, it must be executed first.

Likewise, it is quite sensible that destructors be executed in reverse order of
derivation. Because the base class underlies the derived class, the destruction of
the base object implies the destruction of the derived object. Therefore, the derived
destructor must be called before the object is fully destroyed.

In cases of multiple inheritance (that is, where a derived class becomes the base
class for another derived class), the general rule applies: Constructors are called in
order of derivation, destructors in reverse order. For example, this program

#include <iostream>
using namespace std;

class base {

public:
base() { cout << "Constructing base\n"; }
~base() { cout << "Destructing base\n"; }

Y

class derivedl : public base {

public:
derivedl() { cout << "Constructing derivedl\n"; }
~derivedl () { cout << "Destructing derivedl\n"; }

Y

class derived2: public derivedl {

public:
derived2 () { cout << "Constructing derived2\n"; }
~derived2 () { cout << "Destructing derived2\n"; }
Y
int main()

{

derived2 ob;

// construct and destruct ob

return 0;

Chapter 16: Inheritance 429

displays this output:

Constructing base
Constructing derivedl
Constructing derived?2
Destructing derived?2
Destructing derivedl
Destructing base

The same general rule applies in situations involving multiple base classes.
For example, this program

#include <iostream>
using namespace std;

class basel {

public:
basel() { cout << "Constructing basel\n"; }
~basel () { cout << "Destructing basel\n"; }
Y

class base2 {

public:
base2 () { cout << "Constructing base2\n"; }
~base2 () { cout << "Destructing base2\n"; }

}i

class derived: public basel, public base2 ({

public:
derived() { cout << "Constructing derived\n"; }
~derived() { cout << "Destructing derived\n"; }
Y

int main()
{
derived ob;

// construct and destruct ob

return 0;

430 C++: The Complete Reference

produces this output:

Constructing basel
Constructing base?2
Constructing derived
Destructing derived
Destructing base?2
Destructing basel

As you can see, constructors are called in order of derivation, left to right, as specified
in derived's inheritance list. Destructors are called in reverse order, right to left. This
means that had base2 been specified before basel in derived's list, as shown here:

l class derived: public base2, public basel {
then the output of this program would have looked like this:

Constructing base2
Constructing basel
Constructing derived
Destructing derived
Destructing basel
Destructing base2

Passing Parameters to Base-Class Constructors

So far, none of the preceding examples have included constructors that require
arguments. In cases where only the derived class’ constructor requires one or more
parameters, you simply use the standard parameterized constructor syntax (see
Chapter 12). However, how do you pass arguments to a constructor in a base class?
The answer is to use an expanded form of the derived class's constructor declaration
that passes along arguments to one or more base-class constructors. The general form
of this expanded derived-class constructor declaration is shown here:

derived-constructor(arg-list) : basel(arg-list),
base2(arg-list),
/e
baseN(arg-list)
{
/ / body of derived constructor
}

Chapter 16: Inheritance

Here, basel through baseN are the names of the base classes inherited by the derived
class. Notice that a colon separates the derived class' constructor declaration from the
base-class specifications, and that the base-class specifications are separated from each
other by commas, in the case of multiple base classes. Consider this program:

#include <iostream>
using namespace std;

class base {

protected:
int i;

public:
base(int x) { i=x; cout << "Constructing base\n"; }
~base() { cout << "Destructing base\n"; }

}i

class derived: public base ({
int j;

public:
// derived uses x; y is passed along to base.
derived(int x, int y): base(y)

{ j=x; cout << "Constructing derived\n"; }
~derived() { cout << "Destructing derived\n"; }
void show() { cout << i << " " << j << "\n"; }

}i
int main()
{
derived ob (3, 4);

ob.show(); // displays 4 3

return 0;

Here, derived's constructor is declared as taking two parameters, x and y. However,
derived() uses only x; y is passed along to base(). In general, the derived class' constructor
must declare both the parameter(s) that it requires as well as any required by the base
class. As the example illustrates, any parameters required by the base class are passed
to it in the base class' argument list specified after the colon.

C++: The Complete Reference

Here is an example that uses multiple base classes:

#include <iostream>
using namespace std;

class basel {

protected:
int 1;

public:
basel (int x) { i=x; cout << "Constructing basel\n"; }
~basel() { cout << "Destructing basel\n"; }

i

class base2 {

protected:
int k;

public:
base2 (int x) { k=x; cout << "Constructing base2\n"; }
~baseZ ()} { cout << "Destructing basel\n"; }

Y

class derived: public basel, public base2 {
int j;
public:
derived(int x, int y, int z): basel(y), base2(z)
{ j=x; cout << "Constructing derived\n"; }

~derived() { cout << "Destructing derived\n"; }
void show() { cout << i << " " << § << " " << k << "\n"; }
T
int main{()
{
derived ob(3, 4, 5);
ob.show(); // displays 4 3 5
return 0;
}

Itis important to understand that arguments to a base-class constructor are passed
via arguments to the derived class' constructor. Therefore, even if a derived class’
constructor does not use any arguments, it will still need to declare one if the base class

Chapter 16: Inheritance 433

requires it. In this situation, the arguments passed to the derived class are simply
passed along to the base. For example, in this program, the derived class’ constructor
takes no arguments, but basel() and base2() do:

#include <iostream>
using namespace std;

class basel {

protected:
int 1;

public:
basel (int x) { i=x; cout << "Constructing basel\n"; }
~basel() { cout << "Destructing basel\n"; }

Yi

class base2 {

protected:
int k;

public:
base2 (int x) { k=x; cout << "Constructing base2\n"; }
~base2 () { cout << "Destructing base2\n"; }

i

class derived: public basel, public base2 {
public:
/* Derived constructor uses no parameter,
but still must be declared as taking them to
pass them along to base classes.
*/

derived(int x, int y): basel(x), base2(y)
{ cout << "Constructing derived\n"; }

~derived() { cout << "Destructing derived\n"; }
void show() { cout << i << " " << k << "\n"; }
Y
int main()
{
derived ob(3, 4);

ob.show(); // displays 3 4

TC++: The Complete Reference
return O;

A derived class' constructor is free to make use of any and all parameters that it is
declared as taking, even if one or more are passed along to a base class. Put differently,
passing an argument along to a base class does not preclude its use by the derived class
as well. For example, this fragment is perfectly valid:

class derived: public base {
int j;
public:
// derived uses both x and y and then passes them to base.
derived(int x, int y): base(x, y)
{ j = x*y; cout << "Constructing derived\n"; }

One final point to keep in mind when passing arguments to base-class constructors:
The argument can consist of any expression valid at the time. This includes function
calls and variables. This is in keeping with the fact that C++ allows dynamic
initialization.

__| Granting Access

When a base class is inherited as private, all public and protected members of that
class become private members of the derived class. However, in certain circumstances,
you may want to restore one or more inherited members to their original access
specification. For example, you might want to grant certain public members of the
base class public status in the derived class even though the base class is inherited as
private. In Standard C++, you have two ways to accomplish this. First, you can use a
using statement, which is the preferred way. The using statement is designed primarily
to support namespaces and is discussed in Chapter 23. The second way to restore an
inherited member's access specification is to employ an access declaration within the derived
class. Access declarations are currently supported by Standard C++, but they are
deprecated. This means that they should not be used for new code. Since there are still
many, many existing programs that use access declarations, they will be examined here.
An access declaration takes this general form:

base-class::member;

Chapter 16: Inheritance

The access declaration is put under the appropriate access heading in the derived class’
declaration. Notice that no type declaration is required (or, indeed, allowed) in an
access declaration.

To see how an access declaration works, let's begin with this short fragment:

class base {
public:

int j; // public in base
}i

// Inherit base as private.
class derived: private base {
public:

// here is access declaration
base::j; // make j public again

Y

Because base is inherited as private by derived, the public member j is made a private
member of derived. However, by including

l base::j;

as the access declaration under derived's public heading, j is restored to its public status.

You can use an access declaration to restore the access rights of public and protected
members. However, you cannot use an access declaration to raise or lower a member's
access status. For example, a member declared as private in a base class cannot be
made public by a derived class. (If C++ allowed this to occur, it would destroy its
encapsulation mechanism!)

The following program illustrates the access declaration; notice how it uses access
declarations to restore j, seti(), and geti() to public status.

#include <iostream>
using namespace std;

class base {
int i; // private to base

C++: The Complete Reference

public:
int j, k;
void seti{int x) { i = x; }
int geti() { return i; }

I

// Inherit base as private.
class derived: private base {
public:
/* The next three statements override
base's inheritance as private and restore 7j,
seti(), and geti() to public access. */
base::j; // make j public again - but not k
base::seti; // make seti() public
base::geti; // make geti() public

// base::i; // illegal, you cannot elevate access

int a; // public
Y

int main()
{
derived ob;

//ob.i = 10; // illegal because i is private in derived

ob.j = 20; // legal because j is made public in derived
//ob.k 30; // illegal because k is private in derived

ob.a = 40; // legal because a is public in derived
ob.seti(10);

cout << ob.geti() << " " << ob.j << " " << ob.a;

return 0;

Access declarations are supported in C++ to accommodate those situations in

which most of an inherited class is intended to be made private, but a few members
are to retain their public or protected status.

Chapter 16: Inheritance

Remember l While Standard C++ still supports access declarations, they are deprecated. This means
anliekil| 111t they are allowed for now, but they might not be supported in the future. Instead, the

standard suggests achieving the same effect by applying the using keyword.

___] virtual Base Classes

An element of ambiguity can be introduced into a C++ program when multiple base
classes are inherited. For example, consider this incorrect program:

// This program contains an error and will not compile.
#include <iostream>
using namespace std;

class base {
public:
int 1i;

}i

// derivedl inherits base.
class derivedl : public base {
public:

int j;

Y

// derived2 inherits base.
class derived2 : public base {
public:

int k;
Y

/* derived3 inherits both derivedl and derived2.
This means that there are two copies of base
in derived3! */
class derived3 : public derivedl, public derived2 ({
public:
int sum;

Y

int main()

{

437

. C++:The Complete Reference

derived3 ob;

ob.1i = 10; // this is ambiguous, which 1???
ob.j = 20;
ob.k = 30;

// 1 ambiguous here, too
ob.sum = ob.i + ob.j + ob.k;

// also ambiguous, which i?
cout << ob.i << " ";

’

cout << 0b.j << " " << ob.k << " ";

7

cout << ob.sum;

return 0;

As the comments in the program indicate, both derived1 and derived2 inherit base.
However, derived3 inherits both derived1 and derived2. This means that there are two
copies of base present in an object of type derived3. Therefore, in an expression like

I ob.i = 10;

which i is being referred to, the one in derived1 or the one in derived2? Because there
are two copies of base present in object ob, there are two ob.is! As you can see, the
statement is inherently ambiguous.

There are two ways to remedy the preceding program. The first is to apply the
scope resolution operator to i and manually select one i. For example, this version of
the program does compile and run as expected:

// This program uses explicit scope resolution to select i.
#include <iostream>

using namespace std;

class base {
public:
int 1i;

Y

// derivedl inherits base.

Chapter 16: Inheritance 439

class derivedl : public base {
public:

int j;
}s

// derived2 inherits base.
class derived2 : public base ({
public:

int k;
I

/* derived3 inherits both derivedl and derived2.
This means that there are two copies of base
in derived3! */
class derived3 : public derivedl, public derived2 {
public:
int sum;

Y

int main{()
{

derived3 ob;

ob.derivedl::1 = 10; // scope resolved, use derivedl's i
ob.j = 20;
ob.k = 30;

// scope resolved
ob.sum = ob.derivedl::i + ob.j + ob.k;

// also resolved here
cout << ob.derivedl::i << " ";

cout << ob.3j << " " << ob.k << " *;

cout << ob.sum;

return O;

As you can see, because the :: was applied, the program has manually selected
derived1's version of base. However, this solution raises a deeper issue: What if only
one copy of base is actually required? Is there some way to prevent two copies from

C++: The Complete Reference

being included in derived3? The answer, as you probably have guessed, is yes. This
solution is achieved using virtual base classes.

When two or more objects are derived from a common base class, you can prevent
multiple copies of the base class from being present in an object derived from those
objects by declaring the base class as virtual when it is inherited. You accomplish this
by preceding the base class' name with the keyword virtual when it is inherited. For
example, here is another version of the example program in which derived3 contains
only one copy of base:

// This program uses virtual base classes.
#include <iostream>
using namespace std;

class base {
public:
int 1i;

}s

// derivedl inherits base as virtual.
class derivedl : virtual public base {
public:

int 3;

T

// derived2 inherits base as virtual.
class derived2 : virtual public base {
public:

int k;
Y

/* derived3 inherits both derivedl and derived2.

This time, there is only one copy of base class. */
class derived3 : public derivedl, public derived2 ({
public:

int sum;
I
int main()
{

derivedl3 ob;

ob.i = 10; // now unambiguous

Chapter 16: Inheritance

ob.j = 20;
ob.k 30;

// unambiguous
ob.sum = ob.1i + ob.j + ob.k;

// unambiguous

LRI

cout << ob.1 << ;

cout << ob.3j << " " << ob.k << " ",

cout << ob.sum;

return 0;

As you can see, the keyword virtual precedes the rest of the inherited class’
specification. Now that both derivedl and derived2 have inherited base as virtual,

any multiple inheritance involving them will cause only one copy of base to be present.

Therefore, in derived3, there is only one copy of base and ob.i = 10 is perfectly valid
and unambiguous.

One further point to keep in mind: Even though both derived1 and derived2
specify base as virtual, base is still present in objects of either type. For example, the
following sequence is perfectly valid:

// define a class of type derivedl
derivedl myclass;

myclass.i = 88;

The only difference between a normal base class and a virtual one is what occurs
when an object inherits the base more than once. If virtual base classes are used, then
only one base class is present in the object. Otherwise, multiple copies will be found.

441

